Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo‐binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co‐crystallization and concomitant co‐precipitation between [PtCl6]2−dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6]2−dianion recognition is driven by weak [Pt−Cl⋅⋅⋅H−C] hydrogen bonding and [Pt−Cl⋅⋅⋅C=O] ion–dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt‐ and Pd‐ or Rh‐based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6]2−dianions from a mixture of [PtCl6]2−, [PdCl4]2−, and [RhCl6]3−anions. This protocol could be exploited to recover platinum from spent vehicular three‐way catalytic converters and other platinum‐bearing metal waste.more » « less
-
Abstract Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well‐defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2g−1in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin‐orbit coupling associated to Br heavy atoms in 1,3,5,8‐tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+supramolecular dyad. The TBP⊂ExBox4+complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed‐electronic states. The lowest triplet state (T1, 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+, for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4, confirming the importance of the newly formed excited‐state manifold in TBP⊂ExBox4+for the population of the low‐lying T1state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host–guest chemistry.more » « less
-
Significance Electronic waste, also called e-waste, is rapidly becoming a major industrial hazard because of the increased use of circuits and screens. With the right technology, however, this waste could become a sustainable source for precious metals. Such a solution requires selectivity toward the precious metals, as this characteristic is even more important than capacity. A porphyrin-based porous polymer with selective binding shows remarkable selectivity and a reductive mechanism, a combination which makes for record-high recycling of precious metals––particularly gold––from e-waste.more » « less
An official website of the United States government
